Conditional regulation of Puf1p, Puf4p, and Puf5p activity alters YHB1 mRNA stability for a rapid response to toxic nitric oxide stress in yeast

نویسندگان

  • Joseph Russo
  • Wendy M. Olivas
چکیده

Puf proteins regulate mRNA degradation and translation through interactions with 3' untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3' UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay stimulation by Puf proteins is also responsive to cellular stress. YHB1 mRNA is stabilized in galactose and high culture density, indicating inactivation of the Puf proteins. This condition-specific inactivation of Pufs is overcome by Puf overexpression, and Puf4p/Puf5p overexpression during nitric oxide exposure reduces the steady-state level of endogenous YHB1 mRNA, resulting in slow growth. Puf inactivation is not a result of altered expression or localization. Puf1p and Puf4p can bind target mRNA in inactivating conditions; however, Puf5p binding is reduced. This work demonstrates how multiple Puf proteins coordinately regulate YHB1 mRNA to protect cells from nitric oxide stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensive Association of Functionally and Cytotopically Related mRNAs with Puf Family RNA-Binding Proteins in Yeast

Genes encoding RNA-binding proteins are diverse and abundant in eukaryotic genomes. Although some have been shown to have roles in post-transcriptional regulation of the expression of specific genes, few of these proteins have been studied systematically. We have used an affinity tag to isolate each of the five members of the Puf family of RNA-binding proteins in Saccharomyces cerevisiae and DN...

متن کامل

Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins

eIF4E-binding proteins (4E-BPs) regulate translation of mRNAs in eukaryotes. However the extent to which specific mRNA targets are regulated by 4E-BPs remains unknown. We performed translational profiling by microarray analysis of polysome and monosome associated mRNAs in wild-type and mutant cells to identify mRNAs in yeast regulated by the 4E-BPs Caf20p and Eap1p; the first-global comparison ...

متن کامل

Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors.

Using DNA microarrays, we compared global transcript stability profiles following chemical inhibition of transcription to rpb1-1 (a temperature-sensitive allele of yeast RNA polymerase II). Among the five inhibitors tested, the effects of thiolutin and 1,10-phenanthroline were most similar to rpb1-1. A comparison to various microarray data already in the literature revealed similarity between m...

متن کامل

Protection from nitrosative stress by yeast flavohemoglobin.

Yeast hemoglobin was discovered close to half a century ago, but its function has remained unknown. Herein, we report that this flavohemoglobin protects Saccharomyces cerevisiae from nitrosative stress. Deletion of the flavohemoglobin gene (YHB1) abolished the nitric oxide (NO)-consuming activity of yeast cells. Levels of protein nitrosylation were more than 10-fold higher in yhb1 mutant yeast ...

متن کامل

Transcriptional Response of Candida albicans to Nitric Oxide and the Role of the YHB1 Gene in Nitrosative Stress and Virulence□D

Here, we investigate how Candida albicans, the most prevalent human fungal pathogen, protects itself from nitric oxide ( NO), an antimicrobial compound produced by the innate immune system. We show that exposure of C. albicans to NO elicits a reproducible and specific transcriptional response as determined by genome-wide microarray analysis. Many genes are transiently induced or repressed by NO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015